内陆水体水质遥感研究进展

    Advances in remote sensing of water quality in inland waters

    • 摘要: 遥感技术能够在大尺度上高效率、低成本地实现对内陆水体水质参数的监测,在河湖管理与水资源保护中发挥重要作用。采用文献计量方法,以2005~2024年间Web of Science核心合集(SCI-E)以及CNKI数据核心(北大核心、EI、SCI)库中所收录的共计2 796篇相关文献为研究对象,以内陆水体水质遥感研究态势为研究目标,运用CiteSpace工具绘制了国内外文献共被引、作者共作以及关键词时间线等可视化图谱,深入分析了论文时间、学科、期刊以及来源国家的分布情况,给出了高影响机构、高产作者以及重要研究文献,并基于Burst检测探究了不同阶段关键词演化发展过程。结果表明: ① 2005~2024年间,国内外内陆水体水质遥感研究论文发表量整体在波动中上升,年均增速分别为4.58%与11.62%。②中国是发表文献最多的国家(700篇英文、589篇中文文献),其次是美国(569篇)、印度(176篇)等。③ 2005~2016年间,遥感水质监测、多光谱反演水质参数、湖泊水色遥感等是研究的重点,主要采用了基于波段或波段组合的经验/半经验统计模型,叶绿素a、CDOM等参数反演精度低于65%。2016~2022年间,研究热点逐渐转向基于遥感反射率推算水质参数、无人机遥感以及浊度监测等领域,主要采用了基于生物光学模型的分析/半分析反演算法,在太湖梅梁湾等特定湖区叶绿素a反演精度高达90%,浊度、总N等参数反演精度提升至70%。2022年以来,高光谱遥感水质参数反演、蓝藻水华监测、随机森林算法等成为了新的研究热点,可溶性有机碳(DOC)、化学需氧量(COD)、总悬浮物、透明度等拟合度R2超过0.8。研究成果可厘清全球内陆水体水质遥感发展脉络、推测发展方向与研究热点,为推动中国水资源科学管理与保护提供参考。

       

      Abstract: Remote sensing technology enables efficient and low-cost monitoring on inland water quality parameters at large scales, playing a crucial role in river-lake management and water resource protection.Using bibliometric methods, this study analyzes 2, 796 relevant publications from the Web of Science Core Collection (SCI-Expanded) and CNKI core databases (including Peking University Core, EI, and SCI) between 2005 and 2024.Focusing on research trends in inland water quality remote sensing, CiteSpace was employed to visualize co-citation networks, author collaborations, and keyword timelines.The distribution of publications by time, discipline, journal, and country was analyzed, identifying high-impact institutions, productive authors, and significant literature.Keyword evolution across stages was investigated through burst detection.Key findings are: ①Global publications on inland water quality remote sensing showed fluctuating growth during 2005~2024, with annual growth rates of 4.58% (Chinese publications) and 11.62% (international publications).② China produced the most publications (700 English; 589 Chinese), followed by the United States (569) and India (176).③During 2005~2016, research focused on remote sensing water quality monitoring, multispectral inversion of water quality parameters, and lake color remote sensing, primarily using band-based empirical/semi-empirical models with inversion accuracy for chlorophyll-a and CDOM below 65%.From 2016~2022, emphasis shifted to remote-sensing-reflectance-based parameter estimation, UAV remote sensing, and turbidity monitoring, employing bio-optical analytical/semi-analytical algorithms.Chlorophyll-a inversion accuracy reached 90% in specific areas like Meiliang Bay in Taihu Lake, while turbidity and total nitrogen accuracy improved to 70%.Post-2022, research hotspots include hyperspectral parameter inversion, algal bloom monitoring, and random forest algorithms, achieving R2>0.8 for DOC, COD, total suspended solids, and water transparency.This study clarifies global research trajectories and emerging trends, providing references for scientific water resource management and protection in China.

       

    /

    返回文章
    返回