基于KAN-N-Beats的可解释性滑坡位移预测

    Interpretable landslide displacement prediction based on KAN-N-Beats

    • 摘要: 针对现有滑坡位移预测模型预测精度不高、泛化性差、模型复杂度高以及传统深度学习算法可解释性差的问题,提出了一种基于KAN-N-Beats的滑坡位移预测模型。使用KAN代替N-Beats中的全连接层,利用KAN采用自适应学习机制的特点,提高了预测精度以及泛化性能;同时KAN通过稀疏性、可视化、剪枝、符号化及仿射拟合等多种手段,提高了模型的可解释性。N-Beats则将预测任务分解为趋势和季节性成分,便于理解不同时间序列特征的提取,使得KAN-N-Beats模型预测结果具有更高的可解释性;利用N-Beats模型内部可分解的能力将滑坡位移分解后预测,不需要大量特征工程,减少了KAN-N-Beats模型复杂度,提高了预测效率。使用国家冰川冻土沙漠科学数据中心的三峡库区白水河滑坡和八字门滑坡的数据作为研究数据集,该方法在白水河滑坡ZG118监测点的预测结果与真实位移高度重合,R2RMSE分别为0.988 7和5.031 3 mm。在白水河滑坡ZG118以及八字门滑坡ZG110、ZG111监测点的泛化性测试表明,该算法优于其他对比模型,可提高滑坡预测精度,且具有可解释性。研究成果可为提升滑坡位移预测效率提供参考。

       

      Abstract: Aiming at problems of low prediction accuracy, poor generalization, high model complexity in existing landslide displacement prediction models, and poor interpretability of traditional deep learning algorithms, this study proposes a landslide displacement prediction model based on KAN-N-Beats (KAN-N-Beats).KAN-N-Beats replaces the fully connected layers of the N-Beats architecture with Kolmogorov-Arnold Networks (KAN).Using KAN′s adaptive learning capabilities enhances both prediction accuracy and generalization performance.Furthermore, KAN intrinsically improves model interpretability through techniques like sparsity regularization, visualization, pruning, symbolic regression, and affine function fitting.While, N-Beats decomposes the prediction task into interpretable trend and seasonal components, which enables extraction of distinct time-series features.This synergistic combination endows KAN-N-Beats with significantly higher interpretability of its predictions.Additionally, N-Beats′ inherent decomposition capability allows for predicting landslide displacement after decomposition, eliminating the need for extensive feature engineering, which reduces model complexity and improves prediction efficiency.Data from the Baishuihe landslide and Bazimen landslide in the Three Gorges Reservoir area (sourced from the National Cryosphere Desert Science Data Center) served as the research dataset.Validation results at monitoring point ZG118 of the Baishuihe landslide are highly consistent with the real displacement, showing R2 and RMSE values of 0.988 7 and 5.031 3, respectively.The generalization test at the monitoring points of Baishuihe landslide ZG118 and Bazimen landslide ZG110 and ZG111 shows that the proposed algorithm is better than other compared models, which can improve the accuracy of landslide prediction and has interpretability.The research results can provide a reference for improving the efficiency of landslide displacement prediction.

       

    /

    返回文章
    返回