融合物理机制的机器学习水文模型研究进展

    A review of machine learning hydrological models integrating physical mechanisms

    • 摘要: 随着信息技术和物理模型的发展,融合物理机制的机器学习方法因其优越的准确性、物理一致性以及有效处理不确定性和非线性特征的能力,正逐渐成为水文领域的研究热点。在重点综述近10 a来融合物理机制的机器学习在水文模型中最新应用与发展的基础上,总结了物理机制与机器学习融合模型的不同应用分类,分为误差校正型、参数优化型、数据增强型、物理约束型、结构内嵌型、公式融入型等6种,并重点讨论了数据与物理双驱动水文模型的进展与不足。最后,展望了融合物理机制的机器学习在水文模型中的发展方向,提出需重点关注模型参数优化、可解释性问题、小样本及中长期尺度模拟等方面的研究,让物理机制与人工智能深度结合的新方法促进水文模型领域的建设与发展。

       

      Abstract: With advancements in information technology and physical modelling, physics-informed machine learning methods are emerging as a research focus in hydrology due to their superior accuracy, physical consistency, and ability to effectively handle uncertainties and nonlinear characteristics. In this paper, we systematically review the latest applications and developments of physics-informed machine learning in hydrological modelling over the past decade. We categorize the integration approaches into six distinct types: mismatch correction, parameter optimization, data augmentation, physical constraints, structural embedding, and formula integration. Special emphasis is placed on analyzing the progress and limitations of dual-driven models that synergize data and physical principles. Future directions are proposed to advance hydrological modelling through physics-machine learning integration, including model parameter optimization, interpretability enhancement, small-sample scenario adaptations, and improved mid-to-long-term scale simulations. The development of novel hybrid approaches combining physics and artificial intelligence is envisioned to drive transformative progress in hydrological model development.

       

    /

    返回文章
    返回