水电日前发电能力智能预测方法

    Research on intelligent day-ahead hydropower generation ability forecasting method

    • 摘要: 水电发电能力精准预测对流域梯级电站协同调度具有重要指导意义。针对传统预测方法难以有效处理多维特征时空耦合关系的问题,提出一种水电日前发电能力智能预测方法: 首先采用5阶段特征辨识策略筛选关键影响因子,继而构建基于Autoformer的智能预测模型,并引入误差校正机制提升预报精度,最终实现长预见期发电能力预测。工程应用结果表明,所提方法在关键性能指标上显著优于传统模型。具体表现为: 预见期为1 d时,池潭水库的均方根误差较次优模型降低9.8%,大言水库的纳什效率系数较次优模型提升4.8%;随着预见期延长,模型仍能保持稳定的预测性能,体现出其在长时序预测中的强鲁棒性。研究通过特征工程优化、智能预测模型构建与误差抑制策略创新,形成了一套系统性方法,为梯级水电系统智能调度提供了高精度、长周期的决策支持。

       

      Abstract: Accurate prediction of hydropower generation capacity is of great significance for the coordinated operation of basin cascade hydropower stations. To address the challenge that conventional prediction methods struggle to effectively integrate the spatiotemporal coupling effects of multidimensional features, this paper proposes an intelligent day-ahead hydropower generation ability forecasting method. The approach involves: screening key factors through a five-stage feature identification strategy, constructing an Autoformer-based intelligent prediction model, and reducing forecast errors via an error correction strategy, thereby achieving long-term hydropower generation forecasting. Engineering applications demonstrate that the proposed method outperforms conventional models in key performance metrics. For instance, at a 1-day forecast horizon, the root mean square error (RMSE) at Chitan Reservoir is reduced by 9.8% compared to the suboptimal model, while the Nash-Sutcliffe efficiency (NSE) at Dayan Reservoir improves by 4.8%. Moreover, the model maintains superior performance even with extended forecast horizons, confirming its high robustness in long-term sequence prediction. Through systematic innovations in feature engineering, intelligent prediction modeling, and error suppression strategies, this study provides high-precision, long-term decision support for intelligent cascade hydropower scheduling.

       

    /

    返回文章
    返回